IP = PSPACE using Error Correcting Codes ∗ Or Meir
نویسنده
چکیده
The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of the theorem are based on the arithmetization technique, which transforms a quantified Boolean formula into a related polynomial. The intuition that underlies the use of polynomials is commonly explained by the fact that polynomials constitute good error correcting codes. However, the known proofs seem tailored to the use of polynomials, and do not generalize to arbitrary error correcting codes. In this work, we show that the IP theorem can be proved by using general error correcting codes. We believe that this establishes a rigorous basis for the aforementioned intuition, and sheds further light on the IP theorem.
منابع مشابه
IP = PSPACE using Error Correcting
The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of the theorem are based on the arithmetization technique, which transforms a quantified Boolean formula into a related polynomial. The intuition that underlies the use of polynomials is commonly explained by the fact that polynomial...
متن کاملIP = PSPACE Using Error-Correcting Codes
The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of the theorem are based on the arithmetization technique, which transforms a quantified Boolean formula into a related polynomial. The intuition that underlies the use of polynomials is commonly explained by the fact that polynomial...
متن کاملThesis for the degree Doctor of Philosophy By Or
Probabilistic proof systems is a paradigm of complexity theory whose study evolves around questions such as “how can we use randomness to prove and verify assertions?”, “what do we gain from using randomness in verification procedures?”, and “what assertions can be verified by probabilistic verification procedures?”. The study of those questions has began in the 1980’s, and led to several of th...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملCombinatorial Construction of Locally Testable Codes ∗ Or Meir † May 10 , 2010
An error correcting code is said to be locally testable if there is a test that checks whether a given string is a codeword, or rather far from the code, by reading only a constant number of symbols of the string. While the best known construction of LTCs by Ben-Sasson and Sudan (STOC 2005) and Dinur (J. ACM 54(3)) achieves very ecient parameters, it relies heavily on algebraic tools and on PCP...
متن کامل